Marine NPP
20-44 Pg C/yr -> 30-60 % global NPP (land + sea)

Greatest per unit area in photic zone, coastal, &
upwelling areas

80% of total in open ocean due to large area

O

| ‘primary production
90 units : g a%gp) Photic Zone

~80% on continental shelf

‘ : NEP > 0 resulting in O,

release to atmosphere
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Oceanic primary production
Z. Estimation at global scale from satellite (coastal zone color
scanner) chlorophyll

David Antoine, Jean-Michel André,! and André Morel

\L { / o -

gC m-2d-!
05 .10 .20 .30 .35 .45 .55 .65 .80 1.0 2.0 Qpa’"
 EmEmmiE el
5 9 18 27 32 40 50 58 72 90 180
gC m2 (3 months)!

Plate 1b. As in Plate 1a, but for the April - May - June period.



Global Nutrient Cycles
(AKA Global Biogeochemical Cycles)

The Global C Cycle



The breathing Earth

The importance of the processes involved depends on the time scale.

[ » O 2] . .
BREATHING” ocean Oxidized C g?sa(?oo Gton C Land PANTING” terrestrial biosphere
Large amount, moderate turnover | Dissolved organic 600 Gton C b :'V'n% carbon ?02 Eotg%? c Modest amount, rapid turnover
(Centuries) Living carbon 1 Gton C €ad carbon In solls on (Decades)
90 Gton/year 120 Gton/year
Atmosphere The “AIRPORT” terminal
700 Gton C Tiny amount, very fast turnover
(Years)
Metamorphism Weathering
CaCOj + SiO, —# CaSiO, + CO, | | CaSiO, + CO, —# CaCO; + SiO,
< 0.1 Gton/year < 0.1 Gton/year
Sedimentary rocks
CaCOj3 + Organic carbon “SNORING” rocks
70,000,000 Gton € Enormous amount, slow turnover
Fossil fuels 4,000 Gton € (Hundreds of millions of years)

Figure 8-1 Carbon reservoirs on Earth and carbon fluxes between them.



Distribution of Actively Cycled Carbon

The silicate weathering CO, thermostat

Regulates atmospheric CO,and climate on geologic time scales.

Volcanic Emissions
CaSi0y+2C0, + H,0 E
Ca™*+ 2HCO; + Si0,

to build calcium
carbonate shells (CaCO; )

s 4 2HC0; 5> CaC0;+ €O, + Hy0

Plate tectonics
Subduction f

CaCO, + SiO, —E—> CaSiO, + CO,

Schlesinger 1991

Carbonate-Silicate

Long-Term Feedback Loop

~0, i .
(~3% of total carbon in the crust) »|  rainfall
748 EEEERE, a}msos;;;heric
2,000 _ ter‘resl:ial
4.5 %
o 75 % Soils
25 % Plants
surface silicate
temperature weathering
(Ts) rate
z
38,000 - oceanic (_)
84.8 %
97 % DIC ==> ~1CO02:100 HCOs : 10 CO3
3% DOC
greenhouse atmospheric
effect pCO,

4,000 geological
9.0 %

Figure 6. Major active reservoirs in the
natural global carbon cycle are the oceans,
terrestrial system and atmosphere. The
oceans are the largest active reservoir; the
atmosphere, the smallest. Geological stores
of recoverable fossil fuels form a reservoir
that was relatively inactive in the carbon
cycle before people began mining and
burning fossil fuels. Reservoir sizes are
expressed in gigatons of carbon.
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Kump et al. 2010 Fig.8-18




Organic Carbon
Long-Term Feedback Loops
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The Global Carbon Cycle

Biologically controlled carbon fluxes are large!
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Figure 23 4 Geographic disiribution of the net flux of carbon from deforestation and agricultural expansion. Source: Houghton et al.
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Figure 23.3 The annual net releases of carbon from changes in land
use (solid line) and the annual emissions of carbon from combustion
of fossil fuels (dotted line) between 1850 and 1980.
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Figure 23.5 Geographic distribution of the emissions of carbon from
combusiion of fossil fuels in 1980. Source: Marland. Rotty. and Treat
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Share of global carbon dioxide emissions from fuel
combustion (2015)
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Figure 7.3. The global carbon cycle for the 1990s, showing the main annual fluxes in GIC yr-': pre-industrial ‘natural’ fluxes in black and ‘anthropogenic’ fluxes in red (modi-
fied from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GIC is inferred from cumulative fossil fuel emissions
minus atmospheric increase minus ocean storage. The loss of —140 GIC from the ‘vegetation, soil and detritus’ compartment represents the cumulative emissions from land use
change (Houghton, 2003), and requires a terrestrial biosphere sink of 101 GtC (in Sabine et al., given only as ranges of —140 to —80 GtC and 61 to 141 GIC, respectively; other
uncertainties given in their Table 1). Net anthropogenic exchanges with the atmosphere are from Column 5 ‘AR4’ in Table 7.1. Gross fluxes generally have uncertainties of more
than +20% but fractional amounts have been retained to achieve overall balance when including estimates in fractions of GIC yr-' for riverine transport, weathering, deep ocean
burial, etc. ‘GPP’ is annual gross (terrestrial) primary production. Atmospheric carbon content and all cumulative fluxes since 1750 are as of end 1994.
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Atmospheric CO,, p.p.m.
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The remaining carbon quota for 66% chance <2°C

Data: IPCC/CDIAC/GCP/Peters et al. 2015
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Mother nature mitigates
climate change to some extent.

@ Fate of Anthropogenic CO, Emissions (2002-2011 average)

8304 PgClyr  90% 4.3+0.1 PgClyr
46%

il v & 26£0.8 PgClyr [l [ 4
___.) o/ B
1o+05 PgC/yr 10% + 28% |,

Calculated as the residual /
of all other flux components

26%
2.5%0.5 PgClyr

Source: Le Quére et al. 2012; Global Carbon Project 2012




The Womads Tk Nosianch Comtn

For the decade of the 1980s, the glodal carbon cycle can be
summarized a follows (units are PgC, One Pg [petagram) = one
billion metric tosnes = 1000 x one billion kg k

Net
A a .-EnnTm cmEwiom 0 ic Missing
e " Smbal+ Om - uptake  carbom sink
fuels changes in
land use

33002)  55605)  1607) 2000%) 1312 19843
ws s 33 + W - 35 - 26 003~ 20\
Amention on the global carbon cycle over mose than 25 years has

focead om the spparest imbalance in the carbon budiget in the above

oquation - the wo-called “missing smk.* missing becasso the

sccumulaton of carton has not been observed. The avernage annual

embssions of 7.1 PgC during the 19805 (5.5 2 0.5 Pg from combustion

of fosail fucks and 1.6 2 0.7 Pg from (hanpes 10 laod wic) are grester

than the sum of the asnual accemulation of carbom in the stmosphere

(33 £02) and he annual wptake by the oceans (2.0 £ 0.8 PgCliyr).

As sdditional sink of | 8 PgClyr is required for balancing the budget.

The serms in the global carbos equation can be shows graphically

over the persod 18501990 [Figure 1),
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Mother nature may be getting

tired.

Volume 579 Issue 7797, 5March 2020

Subscribe

Saturation point

Tropical forests, such as the one in the Democratic Republic
of the Congo pictured, are important carbon sinks, removing
about 15% of anthropogenic carbon dioxide over the course
of the 1990s and early 2000s. In this week's issue, Wannes
Hubau and his colleagues examine the rates at which such
forests in Africa and Amazonia have taken up carbon between
1983 and 2015 - and find marked differences between the two
regions. They reveal that the ability of forests in Africa to act
as a carbon sink was stable until the 2010s when it began to
decline, in contrast to the previously documented decline in
Amazonian forests since the 1990s. They conclude thatboth
continents show a pattern of carbon-sink saturation and
decline, with asynchronous timing and different rates of
reduction. The researchers extrapolate their findings to
predict that by 2030 the carbon sink in Africa will have
shrunk by 14% compared with 2010-15, and that the
Amazonian sink will reach zero in 2035. This decline has
significantimplications for the goal of limiting global
warming to below 2 °C. show less

Cover image: Jabruson/NPL
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Figure 1.3 The concentration of atmospheric CO. at Mauna Loa Observatory in Hawaii,

expressed as a mole fraction in parts per million of dry air. The annual oscillation reflects the

I cycles of ph ynthesis and respiration by land biota in the northern hemisphere.

whille the overall increase is largely due to the burning of fossil fuels. From Keeling (1986).
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Duke FACE Experiment

27 % increasg in .
\ ENY
NPP after 4 years

Hamilton et al. 2002
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CLIMATE CHANGE

Recent global decline of CO, fertilization effects on
vegetation photosynthesis

Songhan Wang™, Yongguang Dang™ . Welmin A7, Jing M. Chen™*, Philippe Clais®,

Alessandro Cescatt, Jordl Sardans™, han A, Janssens”, Wy, Joseph A Berry™,

Dott Campbed”’. Marcos Ferndndes Martinez’. Ramdane ', Stephen Sitch™,

Plerve Friediingsteln’™, Willkam K. Sasth™, Wenping Yuan™, -m-" Danica Lombardezz™.

Markus Kautz”, Dan 2w’, Sebastion Lienert™, Etsushi Kato™, Bergamin Poulter™, Tanjs G. M. Sanders™,
Inken Keiger™, Rong Wang™, Ning Zeng ™™, Hangln Tian™, Nicalas Wichard®, Atul K. Jai™,

Andy Witshire™ | Vanessa Haverd””, Dantel 5. Gol™™, Josep Peflustas™

The enhanced vegetation productivity driven by ncreased concentrabons of carbon dicxde (CO;)
[Le.. the CO, fertization efect (CFE)) sustans an mportant negative feedback on cmate warming, but
the temporal dymamics of CFE reman unclear Using multiple long-term satefite- and grownd based
datasets. we showed that global CFE has decined across most Serrestrial regicns of the globe from 1982
to 2015, comrelabing well wth changing sutrient concentrabions and avalabity of sodl water. Current
carbon cycle models also demonsirate a decinng CFE trend. abet one substantially weaker than
that from Se global cbservations. Ths declining trend in B forcing of tervestrial carton sinks Dy Increasing
amounts of atmospherc CO; imphes 3 weakenng negative feedback on the chmatic system and
noreased socetal dependence on fubure stratepes 1o mitigate chmate warming.
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Increased tree carbon storage in response to
nitrogen deposition in the US

R. Quinn Thomas'*, Charles D. Canham?, Kathleen C. Weathers? and Christine L. Goodale'

Human activities have greatly accelerated emissions of both
carbon dioxide and biologically reactive nitrogen to the
atmosphere'2. As nitrogen availability often limits forest
productivity?, it has long been expected that anthropogenic
nitrogen deposition could stimulate carbon sequestration in
forests*. However, spatially extensive evidence for deposition-
induced stimulation of forest growth has been lacking, and
quantitative estimates from models and plot-level studies are
controversial®'%. Here, we use forest inventory data to examine
the impact of nitrogen deposition on tree growth, survival
and carbon storage across the northeastern and north-central
USA during the 1980s and 1990s. We show a range of growth
and mortality responses to nitrogen deposition among the
region's 24 most common tree species. Nitrogen deposition
(which ranged from 3 to 11kg ha~" yr~") enhanced the growth
of 11 species and decreased the growth of 3 species. Nitrogen
deposition enhanced growth of all tree species with arbuscular
mycorrhizal fungi associations. In the absence of disturbances
that reduced carbon stocks by more than 50%, above-ground
biomass increment increased by 61kg of carbon per kg
of nitrogen deposited, amounting to a 40% enhancement
over pre-industrial conditions. Extrapolating to the globe, we
estimate that nitrogen deposition could increase tree carbon
storage by 0.31Pg carbon yr~".
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some doubt on both the magnitude and the direction, of future
forest C responses. Spatial covariation between N deposition and
patterns of tropospheric ozone and sulphur pollution may further
offset N-induced growth enhancement'®. Here, we use spatially
extensive forest inventory data to discern the effect of N deposition
on the growth and survival of the 24 most common tree species
of the northeastern and north-central US, as well as the effect of
N deposition on C sequestration in trees across the breadth of
the northeastern US.

Species-level responses to N deposition are critical to projections
of how tree communities will change as a result of a range of
factors, including succession, climate change and host-specific
pests®. Individual tree growth responded to N deposition for 14
of the 24 species examined; however, the direction, shape and
magnitude of the response varied by species (Fig. 1, Table 1). Three
of the four most abundant species (Acer rubrum, A. saccharum
and Quercus rubra) showed strong positive growth responses
(>4% increase in C increment per kgNha™'yr™'). The largest
growth enhancements (16-18% per kgNha™' yr™!) occurred in
Liriodendron tulipifera and Prunus serotina, two valuable timber
species. Mycorrhizal association may also influence the response
to N deposition, as all five of the tree species with arbuscular
mycorrhizal associations responded positively (Acer rubrum, A.
saccharum, Fraxinus americana, Liriodendron tulipifera, and Prunus
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Figure 2 | Annual above-ground carbon increment increases with nitrogen deposition. a,b, The relationship between total (wet + dry) inorganic N
deposition and annual above-ground growth of surviving trees (a) and net annual above-ground carbon increment (excluding plots with =50% loss of
carbon stocks) (b) at the plot level. The per cent enhancement uses preindustrial N deposition (1kg N ha=" yr=1) as a baseline and a linear extrapolation of
the response. The mean annual N deposition (6.9 kg N ha=' yr—) estimated for the forest inventory data is shown with the arrows. Two-unit support
intervals are plotted as grey-dashed lines.



The recipe for life contains more than carbon!

It is mostly... CHNOPS

The stoichiometric formula for a living human being is:

. .. . "

Hj7s 000,000 O132.000.000 Css.700,000 N6.430.000 Ca; 500,000 P1.020000 S206.000

N-"Ixt.-nm l\lTT_mm (‘-1117,1..»«»\"?-{10.';1»«» Sizs 600 F(‘_’.W) Zny 110 Cugglyy Mnyg
l"l-l (,'r7 S(“ h'l():; (,:()]

The Global N Cycle



TABLE 3-7

Chemical Forms of Nitrogen
Oxtdation
Formula Name number* Comments
NH, Ammonia -3 Major nutrient form
L Ammonium ion 3 From NI; dissolved in water
NH,* Amino group -1 Constituent of protein
N, Nitrogen gas 0 Bulk of atmosphere
N0 Nitrous oxide +1 Laughiog gas, controls natural ozone cycle
NO Nitric oxide +2 Combustion product
NO,~ Nitrite ion +3 Link in N cycle
NO, Nirrogen dioxide +4 From NO oxidized in atmosphere
NO,- Nitrate ion +5 Principal aurrient form

*Negative oxidarion numbers denote more-reduced forms, and positive oxidation numbers, more-oxidized

forms. Thelich ek al. 1933
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Nitrogenase
N, + BH*+ 8e + 16 MgATP --» 2 NH; + H, + 16 MgADP + 16 P,

MoFe Protein

Schindelin et al, Nature 1997
Chiu et al Blochemistry 2001




Free living & symbiotic (mutualistic)
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Leghemoglobin Human hemoglobin, chain A
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Internal N Cycling in Soils
(ammonification, nitrification, uptake/immobilization)

594 JOSHUA P. SCHIMEL AND JENNIFER BENNETT Ecology, Vol. 85, No. 3
A) Classical paradigm
Mineralization w
regulates overall \
- N cyclin )
Soil . N
Organic |— | Microbes| <=2 | NH, | ——> NO,-
Matter L
Immoblllzatlon<> In gray to note that in some
outcompetes plant soils, nitrification is of
uptake minor importance
B) New paradigm
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FiG. 1. The changing paradigm of the soil N cycle. (A) The dominant paradigm of N cycling up through the middle
1990s. (B) The paradigm as it developed in the late 1990s.
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What determines whether microbes release or
acquire inorganic N from the soil solution?

NH,*

Net
Mineralization
Proteins ==> Amino Acids
Protease
If (E/N)sub = (E/N)microbe
Then E limits growth
AA =>R+NH,*
+
lf (E/N)sub > (E/N)micrubc NH4
Then N limits growth
Cellulases
Cellulose => => Glucose
Net

NH," Required Immobilization



Denitrification

(major pathway that returns N to the atmosphere)

In Defense of Mud
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Fig. 3. Results of a core segmentation experiment to identify active
denitrifying sites in soil. All incubations were conducted under a
headspace atmosphere of 18-kPa O, and 10-kPa C;H,.
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Major global reserviors of N

Reservior  Estimated Total (Pg N)

Igneous Rock 36,000,000
Atmosphere 3,800,000

Ocean 21,000

Soil Organic Matter 95
Terrestrial Biota 3.5
Anthropomass 0.006 .

Sources: Schlesinger 1991; Smil 1990

Global N Cycle
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Humans Fix Nitrogen Too !

The Haber Process
3CH, + 6 H,0 =>3CO, + 12 H,
4N, + 12 H, + catalyst ==

8 NH,

at 500°C & several hundred atmospheres
of pressure

Fritz Haber

https://radiolab.org/episodes/180132-how-
do-you-solve-problem-fritz-haber




Atmospheric N deposition has increased in
time & space
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Figure 2. Spatial patterns of total inorganic nitrogen deposition in (a) 1860, (b) early 1990s, and
(¢) 2050, mgNm 2yr~'.

Galloway et al. 2004
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Figure 25.3 Exponential rive of global syathesis of nitrogenous
fernhzers between 1920 and 1985, Assembled from a variety of
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Table 12.3 Estimated Sources and Sinks of N.O
Typical of the Last Decade (10'%g N/yr)*

Sources

Natural
Oceans
Tropical soils
Wet forests
Dry savannas
Temperate soils
Forests
Grasslands
Total identified natural sources

Anthropogenic
Cultivated soils
Biomass burmning
Industrial sources
Cattle and feed lots
Total identified anthropogenic sources

Toual identified sources
Sinks

Stratospheric destruction

Soil microbial activity

Atmosphenc increase

Total identified sinks
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15.7

12.3
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16.2

“From Prather et al. (1993), except ocean flux

(Nevison et al. 1995).



You can too much of a good thing!

Nitrogen saturation is a sustained supply of available N in excess
of biotic demand
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Schlesinger & Bernhardt 2013 from Levin 1989
NPP vs N inputs to terrestrial, marine, & aquatic systems

N saturation may:

* deplete soils of exchangeable
nutrient cations

* increase toxic Al*** levels

* alter soil- and stream-water
chemistry

 reduce the growth of trees

[ red uce SpeCieS d ive rSity Fig. 9. View of the control (top panel), low N (middle panel) and

high N (bottom panel) canopy in the pine stand at the Harvard
Forest (images courtesy of Christian Arabia).



Are these the shadows of the things that Will be,
or are they shadows of things that May be, only?

Charles Dickens
A Christmas Carol

Nitrate in Precipitation at the Fernow Experimental Watershed

Parsons, WV
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